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ABSTRACT

This paper proposes control strategies to allocate COVID-19 patients to screening facilities, health facili-
ties, and quarantine facilities for minimizing the spread of the virus by these patients. To calculate the
transmission rate, we propose a function that accounts for contact rate, duration of the contact, age struc-
ture of the population, susceptibility to infection, and the number of transmission events per contact.
Moreover, the COVID-19 cases are divided into different groups according to the severity of their disease
and are allocated to appropriate health facilities that provide care tailored to their needs. The multi-stage
fuzzy stochastic programming approach is applied to cope with uncertainty, in which the probability as-
sociated with nodes of the scenario tree is treated as fuzzy variables. To handle the probabilistic model,
we use a more flexible measure, Me measure, which allows decision-makers to adopt varying attitudes
by assigning the optimistic-pessimistic parameter. This measure does not force decision-makers to hold
extreme views and obtain the interval solution that provides further information in the fuzzy environ-
ment. We apply the proposed model to the case of Tehran, Iran. The results of this study indicate that
assigning patients to appropriate medical centers improves the performance of the healthcare system.
The result analysis highlights the impact of the demographic differences on virus transmission, and the
older population has a greater influence on virus transmission than other age groups. Besides, the re-
sults indicate that behavioral changes in the population and their vaccination play a key role in curbing

COVID-19 transmission.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

"May God bless us and help us to defeat COVID-19 all together."

In the last decades, a rising number of outbreaks have occurred
globally due to climate changes, demographic changes, and habitat
destruction (Nkengasong, 2020). Ebola virus outbreak (2013), Mid-
dle East respiratory syndrome (MERS) coronavirus outbreak (2012),
H1INT1 flu outbreak (2009), and severe acute respiratory syndrome
(SARS) outbreak (2002) are examples of epidemic outbreaks dur-
ing the last two decades. Such situations disrupt people’s lives
and impose heavy social and economic burdens on affected com-
munities (Silal, 2021). Recently, a novel coronavirus, SARS-CoV-2,
has caused a new outbreak which quickly changed into a pan-
demic and has infected a significant number of people around the
world (Nikolopoulos et al. 2021). Therefore, due to the rising num-
ber of outbreaks and their impacts on societies, effective responses
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should be prepared to cope with such outbreaks and mitigate their
effects.

This new coronavirus is different from MERS-CoV (coronavirus
caused MERS) and SARS-CoV (coronavirus causes SARS). It has a
higher transmission rate and easily spreads between humans. As
of 6 June 2021, there has been reported 176,066,274 COVID-19
(C-19) confirmed cases and 3801,301 total deaths (Worldometers,
2021). Notably, the death rate due to C-19 is lower than the other
known coronavirus diseases; however, due to high transmissibility,
the death toll of C-19 has exceeded the death toll of MERS and
SARS (WHO, 2020a). This virus is transmitted mainly through the
droplets (generated from talking, coughing, and sneezing) when a
susceptible person is in close contact with an infected person. The
population’s age structure also affects the transmission of the dis-
ease (Zhang et al., 2020). If the C-19 spread is not appropriately
contained, a considerable number of people will be infected by this
virus; accordingly, the healthcare system will be overwhelmed by
patients and will face a capacity shortage. High economic costs will
also be imposed on the communities (Nagurney, 2021). Therefore,
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decision-makers (DMs) need to take effective strategies to control
the outbreak and slow and stop the C-19 transmission.

The infected patients’ age and their medical conditions affect
the risk and severity of the C-19 disease; accordingly, the C-19
virus can cause mild symptoms such as caught and fever to severe
symptoms such as shortness of breath and kidney failure. The risk
of severe disease is also higher for older adults and those with un-
derlying conditions such as diabetes and cancers (Liu et al., 2020a,
2020b). Based on the disease severity, the treatment process of the
patients and their required care equipment will be different. Pa-
tients with severe illness may need advanced care in intensive care
units (ICUs), oxygen therapy, or ventilation. However, mild cases
may not need inpatient care, and they can be isolated in commu-
nity facilities such as stadiums and hotels (WHO, 2020b). The lim-
ited resources and limited capacities of health facilities (HFs) are
critical factors during outbreaks (Li et al., 2021). Therefore, regard-
ing the community spread of C-19, the limited capacity of HFs, and
the scarcity of advanced care resources, the patients with different
illness severity should be assigned to the appropriate facilities that
provide medical services tailored to their needs. In this case, pa-
tients can receive their required care effectively, and the resources
will be fairly assigned to patients; thus, C-19 cases can access life-
saving treatment without compromising public health objectives.
Moreover, after improving the conditions of the C-19 patients, they
will be transferred to quarantine facilities (QFs) during their recov-
ery process.

Regarding the novelty of the C-19 virus and the enormous
amount of uncertainty surrounding the healthcare system, infor-
mation on this disease is not yet fully known. Uncertainties can
compromise the reliability of the decisions and deteriorate the per-
formance of the healthcare system. During the COVID-19 outbreak
(CVO), the demand for health services is highly uncertain, and han-
dling this uncertainty will provide optimal allocation decisions. Ac-
cording to the above, DMs should adopt reliable strategies to cope
with uncertainties during outbreaks.

Several aspects of different outbreaks have been discussed in
the following review papers. Chowell and Nishiura (2014) reviewed
the developed mathematical models for containing the Ebola virus
outbreak in West Africa and explored the impacts of different in-
terventions on spreading the virus. Dimitrov and Meyers (2014) in-
vestigated the different mathematical models for forecasting the
spread pattern of infectious diseases. Dasaklis et al. (2012) studied
the role of logistics operations in containing epidemic outbreaks.

Several techniques can be used to control, manage, and contain
disease outbreaks in affected areas. We categorized the relevant
literature into two main streams: forecasting disease spread dur-
ing outbreaks, and allocating and distributing emergency resources
during outbreaks. In the first stream, the researchers used mathe-
matical models and simulation methodologies to estimate the pro-
gression of the disease during the outbreak and analyzed the im-
pact of control interventions on the spread of the disease. Das et
al. (2008) proposed a simulation model to mimic the spread of in-
fluenza, in which several features such as demographic, psycholog-
ical, and epidemiological features were considered in the model.
Pandey et al. (2014) presented a stochastic model to estimate the
transmission of the Ebola virus before and after adopting control
measures such as curfew and social distance. In this model, differ-
ent sources of infection such as community, HF, and funeral were
taken into account. Hackl and Dubernet (2019) used an agent-
based approach to simulate the spread of seasonal influenza dis-
ease in urban areas by considering the interaction between indi-
viduals and their behaviors during a day.

In the second stream, researchers aimed to efficiently allocate
limited emergency resources among affected people regarding the
dynamics of the outbreaks. Tanner and Ntaimo (2010) developed
a fuzzy stochastic programming approach to determine the opti-
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mal allocation of vaccines and vaccination policies during an epi-
demic outbreak under uncertainty in contact rate and vaccine ef-
ficacy. Koyuncu and Erol (2010) used a mathematical model to
find the optimal resource allocation during the influenza pandemic
to minimize the virus transmission and the outbreak’s duration.
Rachaniotis et al. (2012) developed a deterministic model to de-
termine the optimal allocation of limited resources during the in-
fluenza pandemic in a mass vaccination setting. The concept of
job deterioration was incorporated into the problem. He and Liu
(2015) developed a model to manage the distribution of medical
services during infectious disease outbreaks. The psychological and
physical effects of the outbreak on the affected people were con-
sidered in the model. Anparasan and Lejeune (2018) provided a
mathematical model to support the response supply chain during
cholera outbreaks in developing countries.

In some papers, the problem of disease spread and resource al-
locations were investigated simultaneously. Tebbens and Thomp-
son (2009) presented a model to manage the spread of multiple
infectious diseases. The limited budget was allocated to eradicate
the diseases, and policies adopted to control the spread of the dis-
eases were prioritized due to the budget constraints. Ren et al.
(2013) provided a model to control the propagation of the small-
pox disease. They aimed to determine the optimal allocation of
vaccines regarding the limited resources and the optimal control
measures concerning transmission intensity in the infected areas.
Yarmand et al. (2014) developed a mathematical model to esti-
mate the spread of seasonal influenza. They proposed a two-phase
model to distribute the vaccines to infected people. In this study,
vaccines are distributed among people considering the uncertainty
in outbreak dynamics in the first phase. Then, the vaccines are re-
distributed in the second phase based on the outcomes of the first
phase. Ekici et al. (2014) investigated the propagation of influenza
disease, designed a network to allocate resources among infected
people, and determined the optimal working hours of distribution
centers in each period.

Wanying et al. (2016) provided a response plan for anthrax at-
tacks, in which they assessed the number of infected people and
distributed antibiotics among HFs based on the patients’ disease
severity in those HFs. Liu and Zhang (2016) forecasted the un-
certain demand for medical resources during an influenza out-
break using a transmission model and assigned the medical re-
sources to HFs based on the predicted demands. They also updated
their estimated demands based on the collected data from HFs.
Dasaklis et al. (2017) provided a transmission model to estimate
the progression of the disease during a smallpox attack. Then, they
proposed a deterministic model to manage the supply of emer-
gency resources considering healthcare and transportation capac-
ities. Bilyiiktahtakin et al. (2018) provided a mathematical model
for controlling the spread of the Ebola disease and determining the
optimal amount of resources in health centers. Liu et al. (20203,
2020b) provided an epidemic-logistic model to determine the dy-
namic of HIN1 influenza, allocate the resources, and determine the
number of required isolation wards.

Uncertainty plays a key role in decision-making processes dur-
ing outbreaks; however, a few of the reviewed papers, such as
Ekici et al. (2014), Yarmand et al. (2014), and Tanner and Ntaimo
(2010), considered uncertainty in their presented problems. Ekici
et al. (2014) incorporated demand uncertainty in their proposed
model and used a dynamic approach to handle it. Yarmand et
al. (2014) considered uncertainty in vaccination outcome, which
is dealt with a two-stage stochastic approach. Tanner and Ntaimo
(2010) considered uncertainty in disease parameters and used a
fuzzy stochastic approach to cope with it.

Recently, some researchers have investigated the CVO to pro-
vide efficient strategies for controlling this outbreak. In the fields
of the supply chains, Ivanov (2020) investigated the effect of dis-
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ruptions originated from the CVO on the performance of the sup-
ply chains using simulation methodology under several scenarios
such as local and epidemic spread of the virus. Peirlinck et al.
(2020) presented a model to estimate the spread of the C-19 virus
before adopting control measures in the affected areas. Govindan
et al. (2020) proposed a decision support system for managing the
demand for medical care during CVO. This system categorizes pa-
tients into several groups based on their ages and medical condi-
tions, prioritizes them in terms of their conditions, and connects
them to appropriate service providers. Mehrotra et al. (2020) pro-
posed a two-stage stochastic model for managing the allocation of
ventilators during CVO. In this model, different demand scenarios
are considered, and the idle ventilators can be shared between HFs
based on the risk levels. Weissman et al. (2020) proposed a deter-
ministic model for forecasting the spread of the C-19 disease. The
model is used to obtain the optimal decision for allocating emer-
gency resources and managing hospital capacities effectively. Lin
et al. (2020) proposed a model to predict the transmission of the
C-19 virus and investigated the effect of preventive measures and
people’s behavior on spreading the diseases.

Manufacturing and distributing vaccines are key challenges dur-
ing CVO (Alam et al., 2021; Sinha et al., 2021). Georgiadis and
Georgiadis (2021) developed a mathematical model for planning
the C-19 vaccine supply chain while minimizing its cost. A rolling
horizon algorithm is used to handle the uncertainties in the daily
plan of vaccination centers. Abbasi et al. (2020) proposed a model
to determine optimal allocation decisions in an integrated vaccine
supply chain. The model aims to minimize the risk of infection,
and transshipping vaccines between the centers is allowed. An age-
based model was presented by Chen et al. (2020) to determine the
optimal policy for vaccine allocation that resulted in a minimized
number of infected cases and deaths.

In short, in the reviewed literature, some researchers investi-
gated the performance of the supply chains during health crises
from different aspects; however, the effects of uncertainties on
supply chains are still to be adequately investigated. Considering
uncertainty in such situations will result in more reliable decisions.
Moreover, the research on the healthcare supply chain during the
CVO is at a nascent stage, and the resource allocation problems
during this uncertain environment need further investigations. As-
signing patients to the centers providing appropriate medical care
is also a key factor in allocating emergency resources, which is not
appropriately addressed in CVO. This factor prevents the misuse of
limited resources, and consequently, optimal care will be provided
for patients on time. In addition to properly allocating resources
during CVO, policymakers aim to prevent the further spread of the
disease. Therefore, reliable estimation of the spread of the C-19 by
considering the transmission characteristic of the virus and adopt-
ing effective strategies influences the mitigation of the outbreak
significantly.

In this paper, we propose a mathematical model to allocate the
C-19 cases to health centers so that the spread of the C-19 virus
by these patients is minimized. The transmission rate of C-19 de-
pends on the rate of contact between an infected and a susceptible
case, the probability of disease transmission, the proportion of in-
fected cases, and the population’s age structure. Besides, C-19 cases
are categorized into three groups regarding the severity of their
illness and their background of the disease; consequently, differ-
ent types of HFs, including isolation facilities (HF;s), general hos-
pitals (HF;s), and specialized hospitals (HF3s), are considered, and
patients are assigned to HFs that provide medical services tailored
to their needs. The number of suspected C-19 cases is considered
uncertain in order to reflect real-world conditions properly. The
uncertainty in this parameter affects allocation decisions, trans-
mission rate, and reliability of the model. To cope with the un-
certainty, a multi-stage fuzzy stochastic programming (MFSP) ap-
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proach is applied to the model. In this approach, the decisions can
be updated as more information is realized over time; as a result,
the performance of the healthcare system improves. Besides, the
probability of the nodes of the scenario tree is considered as fuzzy
parameters. Finally, Me measure is used to handle the fuzzy ob-
jective function and chance constraints. By applying this measure,
the lower and upper bounds of the optimal decision are provided;
consequently, more information is provided for DMs, and they can
adopt their attitude to their decisions. The main contributions of
this study are as follows:

» Proposing a function for estimating the C-19 transmission rate

based on the rate of contacts between infected and susceptible

cases, the probability of the C-19 transmission per contact, and

the susceptibility of any age group to C-19 infection.

Proposing a mathematical model for minimizing the C-19 trans-

mission rate and determining the optimal assignment of C-19

cases to health centers by considering their limited capacities.

Developing the MFSP approach to deal with uncertainty and

applying Me measure to handle fuzzy objective function and

chance constraints.

Applying the proposed model to a real case to address the prac-

ticality of the model.

 This paper answers the following main questions:

o How to slow the spread of C-19 disease?

* How to assign the patients to health centers in order to manage
the limited capacity efficiently during CVO?

o How to cope with uncertainties to make reliable decisions dur-
ing CVO?

The structure of the paper is as follows. The problem is de-
scribed in Section 2, and the mathematical formulation is ex-
plained in Section 3. The proposed MFSP approach is presented in
Section 4. The case study is addressed in Section 5, and the results
and sensitivity analyses are provided in Section 6. Finally, the con-
clusion, managerial insights, and future avenues are presented in
Section 7.

2. The formal description of the transmission-allocation
problem

This paper presents an emergency supply chain problem to al-
locate C-19 patients to the health centers in an efficient manner
while the disease transmission minimizes. The schematic view of
the proposed network is shown in Fig. 1. First, the suspected C-19
cases of each region refer to C-19 SFs to be tested. After receiv-
ing the test results, a proportion of referred cases is released due
to negative test results. The confirmed cases are assigned to HFs
regarding the illness severity and background of the disease. We
categorize the patients into three types: mildly ill patients (PT;s),
severely ill patients (PT,s), and patients with underlying conditions
(PT3s). PTys have stable conditions, and they do not need inpatient
settings; therefore, they are assigned to HF; in which mild cases
are isolated to prevent the further spread of the virus.

The unstable patients, PT,s and PT3s, need inpatient care (such
as oxygen therapy and ventilation), and therefore, they are trans-
ferred to hospitals. PT,s are patients with severe disease, and they
are allocated to HF,s, while PT3s (whether with severe or mild
symptoms) are transferred to HFss to be treated according to their
special medical conditions. Notably, during CVO, a proportion of
the capacity of hospitals (HF,s and HF3s) is dedicated to C-19 pa-
tients, while routine services are provided for non-COVID-19 (non-
C-19) patients simultaneously. The HFs are capacitated, and there-
fore, if the HF3s are overwhelmed with PTss, this type of patient
will be allocated to HF;s (in case of having available capacity). Be-
sides, the conditions of some of the mild cases who are isolated in
HFs may deteriorate; such patients should be transferred to HF,s.
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Fig. 1. The schematic view of the proposed network.

Furthermore, some of the patients will lose their lives due to the
high severity of the illness. After patients recover from disease in
each type of HF, they are transferred to QFs for monitoring their
conditions. Also, this can prevent the spread of the virus since C-
19 patients may be contagious after they have recovered. Finally,
they are discharged from QFs. The proposed model aims to mini-
mize the C-19 transmission and determine the optimal allocation
of C-19 patients to health centers. We discuss below how to for-
mulate the objective function of the proposed model.

2.1. The transmission rate of the C-19 virus

Each infected case that moves between two nodes (regions, SFs,
HFs, HF,s, HF3s, and QFs) can transmit the C-19 to the suscepti-
ble cases. The rate of C-19 transmission (7) from C-19 patients to
susceptible people depends on three factors: 1) the rate of con-
tacts between an infected case with susceptible cases of age group
g when the infected case travels from node n to node n’ (Cpy,);
2) the probability of C-19 transmission during a contact between a
C-19 case and a susceptible case of age group g; 3) the proportion
of infected cases. Thus, we calculate 71 as follows (see Del Valle et
al.,, 2013; Keeling & Eames, 2005):

rate of contact between an

infected case and susceptible
cases of age group g in the route

connecting node n to node n’

Mgt =

probability of disease
transmission to a

susceptible case of age

group g per contact

- _ e
- ((Cnn’g) (Dnn/ ‘Mnn’ ) (l )

in which a mechanistically based function is used to obtain the
contact rate as follows (see Heesterbeek & Metz, 1993; Roberts,
1996):

proportion of
infected cases in the
route connecting
node n to node n’

(Sg - Pg)

2.Tg.Dyrg

14 2.TgDyg + /T + 4.Tg Dprg

In this formulation, the contact rate (C) is functions of the av-
erage duration of contact between a person of age group g and
other persons (Tg), and the density of the population of age g in
the route (n,n’) (Dpprg)- The population density of regions is known,
and the population density of a route depends on the population

(2)

(Cnn’g =

density of the regions that the route passes and the portion of the
route placed in each region. In other words, the population density
of the route (n,n’) is calculated as follows:

ZE=1 Deg~Menn’ Vn 7& Tl/ (3)

Mnn/

in which Deg is the density of population of age g in region e and
Mep,y is a portion of the route (n,n’), which is placed in region e.
Besides, M, is the distance of route (n,n’).

The susceptibility to C-19 infection varies by age, and therefore,
we consider an age-varying susceptibility to the disease. The in-
vestigations show that children have a lower vulnerability to the
C-19 rather than adults, and older adults are the most vulnerable
group to the virus (Davies et al., 2020). Therefore, we categorize
the susceptible population into three age groups, children with 0
to 14 years old, adults with 15 to 64 years old, and older adults
with more than 64 years old. The susceptibility to C-19 infection
for people of age group g is shown by Sg. Furthermore, the prob-
ability of disease transmission to a susceptible individual of age
g (Pg) is an exponential function of the average duration of con-
tact between an individual of age g and other persons (Tg) and the
average number of transmission events per contact (N), as shown
below (see Del Valle et al., 2013).

Py = 1—e N (4)

Dnn’g =

Regarding the above descriptions, the probability of C-19 trans-
mission in each contact equals Sg.Pg.

Finally, the transmission rate depends on the proportion of the
infected cases in each route (n,n’), which is calculated as the ratio
of the number of infected cases transfers between nodes n and n’
in each period (I,,;) and the number of people in this route. We
estimate the number of the people in route (n,n’) by multiplying
the density of the population in the area that route (n,n’) passes
(D) and the distance of the route (n,n") (M, ). In this study, the
number of infected cases transferred from node n to node n’ is
variable, and it is determined by solving the model. For simplifica-
tion, we rewrite Formulation (1) as follows:

Hnn’t )
ot = (Chnre) . (Sg.Pg). | ———————
e = (Cure)- (5 Fe) (Dnn,.Mnn,
1
= ((Cnn’g)~(Sg-Pg)-(W>-Hnn'r = Mgl VR #n0" (5)
nn’ -NYinn’

in which n’ , is a parameter, and I, is a decision variable ob-
nn'g nn't

tained by solving the presented model in Section 3. The number
of susceptible cases of age group g infected by having contact with
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a C-19 patient is calculated by Mgt = n;n,g.}l,m/[, and the number
of infected persons of any age group by an infected case equals
chzl Nawg = Lnpre Zg:1 n,:n/g = Hnn/t-n;n/-

Covid-19 is a novel virus, and there is little information about
that. It is evident that C-19 patients can transmit the virus to sus-
ceptible people before their treatment (when they are transferring
from regions to SFs (1®S), from SFs to hospitals (n5H), and between
hospitals (n"M)). However, some researchers declared that the C-
19 patients could be contagious after their treatment; therefore,
we consider that the C-19 transmission occurs after patients are
discharged from the hospital; therefore, we consider that the pa-
tients are transferred to QFs (n"Q) after discharging from hospitals
to avoid further C-19 transmission. In this study, we also consider
that the facilities are capacitated. Therefore, the facilities may re-
ject some patients due to the lack of capacity. However, these cases
are infected patients, and they transmit the virus to other people.
Thus, we consider the transmission rate for such patients in each
region as follows:

rate of contact between an
infected case and susceptible
cases of age group g in region e

R
Megt

probability of disease
transmission to a
susceptible case of age

proportion of
infected cases

group g per contact in region e
I
_ (C‘;’g)(sg.Pg)(R%> .

In this formulation, nf, shows the number of infected cases by

a C-19 patient whom facilities reject due to lack of capacity. nfgt
is a function of three factors: 1) the rate of contacts between an
infected case and susceptible cases of age group g in region e (c'gg);
2) the probability of C-19 transmission during a contact between a
C-19 patient and a susceptible individual of age group g; 3) the
proportion of infected cases. (C§g is calculated as follows:

" 2. Ty Deg

C =
& 14 2Ty Deg+ /1 + 4T Deg

in which the contact rate depends on the average contact time
(Tg) and the population density of region e. Sg and Py are obtained
based on the descriptions mentioned above. Finally, the proportion
of the infected cases in region e in each period is calculated as the
ratio of the number of infected cases in region e at each period
(Ie¢) to the number of population in region e (Re). I, is a deci-
sion variable, and it is determined by solving the model. In order
to simplify, we convert the Formulation (6) into the following for-
mulation:

(7)

I 1
Mege = (ng)'(ggpg)'(R%) - (ng)'(Sng)(RTe)'Her =g e

(8)

The total number of infected cases by a C-19 patient in region
e in period t equals Zgzl Mg = let Z§:1 n;’;t = TR,

According to the descriptions mentioned above, the model’s ob-
jective function seeks to minimize the virus transmission from in-
fected cases to susceptible individuals in the presented network
during the planning horizon. It involves transmitting the virus from
C-19 patients when transferred from regions to SFs, from SFs to
HFs, between HFs, from HFs to QFs, and the virus transmission
from patients rejected from different facilities to susceptible peo-
ple. The following assumptions are considered in this study:

o Suspected cases are classified into several groups according to
the regions they are located in, and each group is assumed to
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be located at the center of each region due to its uniform pop-
ulation distribution.

The test result is prepared on the same day the test is taken
SFs, HF;s, HF,s, HF3s, and QFs are capacitated, and the assigned
patients will be rejected by the facilities in case of facing a ca-
pacity shortage in these facilities.

There are no patients in the facilities at the beginning of the
planning horizon.

The main decisions of the presented model are as follows:

The optimal location of SFs, HFs, and QFs.

The number of suspected C-19 cases allocated to SFs.

The number of C-19 cases allocated to HFs and QFs.

The number of PT3s who are assigned to HF,s due to limited
capacities.

The optimal capacity of HFs assigned to C-19 patients.

3. Modeling framework

In this section, the proposed mathematical formulation is pre-
sented.

Appendix A. Notations

The following notations are used in the proposed model in
Section 3.1.

Sets

E Set of regions, e = {1, 2,..., E}

LI Set of candidate locations for SFs, i = {1, 2,..., I}

177" Set of types of patients, j = {1, 2, 3} = {PTy, PT, PT3}

K,K',K"  Set of types of HFs, k = {1, 2, 3} = {HF;, HF,, HF3}

LL, L Set of candidate locations of HFs, | = {1, 2,..., L}

Q Set of candidate locations of QFs, ¢ = {1, 2,..., Q}

T Set of time periods, t = {1, 2,..., T}

Parameters

et The number of suspected cases in region e in period t

Bie The percentage of suspected cases in SF i whose tests results are
negative in period t

Vit The percentage of suspected cases in SF i whose tests results are
positive and are categorized in patient type j in period t

Skt The percentage of deceased C-19 cases in HF I of type k in period
t

efl, The percentage of C-19 cases released from HF I of type k in
period t

e% The percentage of C-19 cases released from QF q in period t

Ol The percentage of patients transferred from HF I of type k to HF
I’ of type k’ in period t

Cu The average number of non-C-19 cases admitted to HF [ of type k

o The capacity of SF i

ol The capacity of HF [ of type k

p;ﬁ The capacity of QF q

e The cost of opening SF i

)J", The cost of opening HF I of type k

)\qﬁ The cost of opening QF q

;Lf The operating cost in SF i

uj.*k, The operating cost of hospitalizing a patient of type j in HF I of
type k

wd The operating cost in QF q

0% The cost of transporting a patient from region e to SF i

03{’[’ The cost of transporting a patient from SF i to HF [ of type k

Qﬂﬂ,, The cost of transporting a patient from HF [ of type k to HF I of
type k'

0,2"? The cost of transporting a patient from HF [ of type k to QF g
The penalty cost of rejecting a patient by facilities (SFs, HFs, QFs)

v The penalty cost of allocating a patient to an HF that does not
provide medical services according to his/her need

S, equals 1 if SF i is located in region e

ol equals 1 if HF [ of type k is located in region e

v The total budget

M A large number
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Decision variables

us equals 1 if an SF is established in candidate location i; otherwise, 0

U,f,' equals 1 if an HF of type k is established in candidate location [;
otherwise, 0

U,? equals 1 if a QF is established in candidate location g; otherwise, 0

Xeit The number of suspected cases in region e assigned to SF i in
period t

Yijuie The number of C-19 cases of type j transferred from SF i to HF [ of
type k in period t

Zuge The number of recovered patients transferred from HF [ of type k
to QF q in period t

Ps, The number of suspected C-19 cases in region e who are rejected

by SF i in period t

P,.‘}'Mr The number of C-19 patients of type j in SF i who are rejected by
HF | of type k in period t

Pgm The number of recovered patients of type k who are hospitalized in
HF | and are rejected by QF g in period t

Cu The percentage of capacity of HF I of type k assigned to C-19
patients

EC The establishment cost

oc The operating cost

TC The transportation cost

PC The penalty cost

Auxiliary variables

e The number of available patients in HF I of type k in period ¢t
Vo The number of available patients in QF g in period t
Auxiliary binary variable
BS, Bl B
Objective dec1sion variable
T The transmission rate of the C-19 virus

Appendix B. Results

The number of assigned cases to different facilities is shown in
the following table.

Table B1
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3.1. The mathematical formulation

In this section, the mathematical formulation of the proposed
location-allocation problem is presented. The objective function
aims to minimize the spread of the C-19 virus as follows:

3

3 I 3 L
minTT = Z Z Z U’/Rs Xeit- Z Yije + Z Z Z Z Z U,ld Uklt

e=1 i=1 t=1 j=1 i=1 j=1 k=1 I=1 t=1
3

L L T L Q T
+2 2 > M o Vi + Y '7kzq Zyge

1=1 I'=1 t=1 k=1 I=1 g=1 t=1
E 1 T
.
+Zm(22ﬁﬁh&)
e=1 i=1 t=1
1 3 3 L

222000 Pluwa

i=1 j=1 k=1 [=1 t=1
301

Q
+ ZZ%&@ )
=1

k=1 =1 g=1

-

In fact, this objective function aims to minimize the C-19 trans-
mission rate in each route and each region regarding Formulations
(5) and (8). The number of infected cases who go to SF i from re-
gion e equals the proportion of suspected cases whose test results
are positive (¥;je-Xei¢)- The number of infected cases transferred
from SF i to HF | of type k is Y. The number of infected cases
transferred from HF; to HF, equals the proportion of PT; whose
conditions deteriorate (o7;yp;.Y] lt) Finally, the number of recovered
patients transferred from HF [ of type k to QF q is Zy4. Besides,
the rejected patients by different facilities (SFs, HFs, and QFs) can
spread the C-19 in the regions, which is considered in the last term
of Formulation (9). subject to

EC = ZA5U5+ZZA +ZAQUQ

k=1 I=1 q=1

(10)

The number of C-19 suspected cases assigned to SFs and the number of occupied beds by C-19 patients in HFs and QFs during the planning

horizon under each scenario.

SF scenario 1 2 3 4 5 6
LAM 858 1031 1204 1030 1203 1376
UAM 1034 1242 1450 1241 1449 1657
scenario 15 16 17 18 19 20
LAM 1376 1375 1549 1722 1206 1379
UAM 1658 1657 1865 2074 1452 1661

HF; scenario 1 2 3 4 5 6
LAM 182 203 223 202 224 244
UAM 220 244 269 244 269 293
scenario 15 16 17 18 19 20
LAM 245 245 265 286 226 247
UAM 295 293 320 344 273 297

HF, scenario 1 2 3 4 5 6
LAM 40 45 51 47 52 57
UAM 49 55 61 56 63 69
scenario 15 16 17 18 19 20
LAM 58 60 65 70 53 58
UAM 70 72 78 84 64 70

HF3 scenario 1 2 3 4 5 6
LAM 33 38 43 39 44 50
UAM 37 44 50 47 54 60
scenario 15 16 17 18 19 20
LAM 51 52 57 62 46 51
UAM 61 63 69 75 55 61

QF scenario 1 2 3 4 5 6
LAM 40 56 71 59 75 90
UAM 43 58 80 68 86 105
scenario 15 16 17 18 19 20
LAM 94 85 100 116 52 68

UAM 105 89 108 126 63 82

7 8 9 10 11 12 13 14
1202 1375 1548 1032 1205 1378 1203 1376
1448 1656 1864 1243 1450 1660 1450 1658
21 22 23 24 25 26 27

1552 1378 1551 1723 1550 1723 1896

1869 1659 1867 2076 1866 2074 2283

7 8 9 10 11 12 13 14

223 243 264 204 225 245 224 244
268 293 318 246 271 296 270 295
21 22 23 24 25 26 27

267 246 267 288 267 287 308

322 297 322 346 321 346 371

7 8 9 10 11 12 13 14
53 58 64 47 52 57 53 58
64 70 77 56 63 69 64 70
21 22 23 24 25 26 27
63 60 65 70 66 71 76
77 72 78 84 80 86 92
7 8 9 10 11 12 13 14
46 51 56 47 44 50 46 51
51 57 63 56 54 60 55 61
21 22 23 24 25 26 27
56 52 57 62 58 63 69
67 63 69 75 70 76 83
7 8 9 10 11 12 13 14
79 94 109 46 62 77 65 81
87 105 124 49 63 80 66 85
21 22 23 24 25 26 27
83 72 87 103 91 106 122
100 86 105 124 109 128 147
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E 1 T 3 3 L T Q T
S0 )9 ITEIE 3535 39 T RIS 3 ST
e=1 i=1 t=1 j=1 k=1 I=1 t=1 q=1 t=1
(11)
E 1 T 1 3 3 L T
TC=3"> > O X + ZZZZZ@ Vi
e=1 i=1 t=1 i=1 j=1 k=1 I=1 t=1
3 L Q T
H
+ 222 g Zuar
kel I=1 g=1 t=1
L L T
+ ZZZQ{-{Z"O_”H/PVICH:L[I (12)
1=1I'=1 t=1
E I T 33 LT 3 1L QT
PC=§. <ZZZ n+ZZZZZP§'kn+ZZZZ”:§m>
e=1i=1 t=1 im1 j=1 k=1 1=1 t=1 k=1 =1 q=1 t=1
I LT
FVY Y Vi kesie (13)
i=1 I=1 t=1
EC+0C+TC+PC< W (14)

Constraints (10)-(13) calculate total establishment cost, total
operating cost, total transportation cost, and total penalty cost, re-
spectively. The presented model aims to find the optimal number
and location of SFs, HFs, and QFs. The facilities can be established
in the obtained optimal locations, and the opening costs are con-
sidered for these facilities (Constraint (10)). The suspected cases
refer to SFs, and they are tested for C-19 disease there. Thus, we
consider operating costs for suspected cases in these facilities. An
operating cost is also considered for assigned patients to differ-
ent types of HFs and QFs (Constraint (11)). Furthermore, the trans-
portation cost is considered for transferring suspected cases from
regions to SFs, transferring C-19 patients from SFs to HFs, transfer-
ring patients between HFs, and transferring patients from HFs to
QFs (Constraint (12)). Finally, some patients are rejected by facil-
ities due to the lack of capacities, and a penalty cost is assigned
to these patients. In some cases, PT3s are assigned to HF,s due to
the lack of capacity in HF3s, which are not compatible with these
patients’ needs; therefore, we consider penalty costs for such cases
(Constraint (13)). Constraint (14) represents the budget constraint.

I
Z(Xezt +Pm) > Oet, Ve,t (15)
B§ < ZXM < piUf Vi, t (16)

Vit (17)

E
z : eit =M zt’

e=1

In the presented network, the suspected cases in each region
are assigned to opened SFs which are capacitated. In each region
and each period, there are a number of suspected cases that will
be assigned to SFs or will be rejected by SFs due to limitation
of capacity in those facilities, which is shown in Constraint (15).
The capacities of opened SFs are also limited, and therefore, the
number of suspected cases refers to an SF should be less than its
capacity, as shown in Constraint (16). As mentioned before, some
suspected cases cannot refer to the assigned SFs due to lack of ca-
pacity, and Constraint (17) shows that opened SFs can reject the
suspected cases. It is evident that suspected cases will be rejected
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by an opened SF when that SF is filled to capacity, guaranteed by
Constraints (16) and (17). To do so, we defined a binary variable,

. This variable equals 0 if the SF i is not opened, and it guar-
antees that P5. equals 0. On the other hand, if SF i is opened, B}
can be equal to 0 or 1. In fact, if SF i is filled (B;.St = 1), suspected
cases can be rejected by SF i; otherwise, Bist =0, and consequently,
no suspected cases are rejected by SF i due to sufficient capacity
in that SF. In other words,

if SF iis opened and is filled in period t

B, =10 if SF i'is not opened or if SF i is opened and is not
filled in period t

L

Z(Yijklt + uklt) = Vijt- erm Vi, t; ] =1k=1 (18)
= e=1

L E

D iguae + Plae) = Vije- D Xeies Viit;j=2k=2 (19)
=1 e=1

L E

Z (Yijklt + Uklt) Z(Yuk e+ jkfm) = Vijt- eri[s

=1 e=1
Vi,t;j=3,k=3,k = (20)

In the next step, the suspected cases referred to SFs will be
tested, the number of patients of each type will be determined,
and they will be assigned to different types of HFs based on
their conditions. Also, some patients will be rejected by hospitals
due to capacity limitations. The confirmed PT;s in each SF will
be assigned to HF;s or rejected by these facilities, as Constraint
(18) shows. Constraint (19) also states that PT,s will be assigned to
HF,s or rejected by these facilities. PT3s will be assigned to HFss
or assigned to HF,s in case of capacity limitation in HF3s. Thus,
Constraint (20) implies that the PT3s will be assigned to HF,s or
HF3s or rejected by these HFs.

I

> Yijue = Vil Vij=1k=1,t=1 (21)
i=1
Vlfll(t—l)' 1- efjl(rq) Zaklk’l e Uy | + ZYthlt = Vi

i=1
Vl,tzZ;j:l,k:],k:Z (22)

After confirmed cases are allocated to hospitals, it should be
guaranteed that the number of allocated patients to each type of
HF is less than its capacity. Constraint (21) indicates that the num-
ber of available PT;s in an HF; in the first period equals the num-
ber of PT;s transferred from SFs to this facility. It is assumed that
there are no patients in these facilities at the beginning of the
planning horizon. In the following periods, a proportion of the ca-
pacity has been filled by patients who were already in the hospi-
tals and are still receiving treatments. Notably, the conditions of
some PT;s in HF;s may deteriorate. In such cases, they will be
transferred from HFys to HF,s to receive their required care. Also,
a proportion of patients will be discharged in each period (T > 2).
Therefore, the number of available PT;s in an HF; in each pe-
riod (T > 2) equals the number of allocated PTys to this facility in
this period addition to the number of patients in the previous pe-
riod by considering the number of patients transferred to opened
HF,s due to deteriorating their conditions and the number of dis-
charged patients, as shown in Constraint (22). Notably, the number
of transferred and discharged patients is determined at the end of
each period, and therefore, they affect the facility’s capacity in the
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next period.

1

Z(Yuklr +Yijue) = Vi
i

Vi;j=2,k=2,j=3,t=1 (23)

I

H H
Voo (1 =&l 21y = Su-n) + D Nijuae + Yijuar)

i=1
L
H H
+ Z Ulc”l”lcl(t—l)~Vk”l”(t—1) =Vie»
=1

Vit>2:j=2k=27=3j =1,k =1 (24)

As mentioned before, some PT3s may be assigned to HF,s due
to a lack of capacity in HFss. Thus, the number of available patients
in each HF, in the first period equals the number of transferred
PTys and PTss to this facility, as Constraint (23) shows. In HF;s,
a proportion of available patients will be released or deceased in
each period, the number of which is determined at the end of each
period (T > 2). It is mentioned that some PTys are transferred to
HF,s, the number of which is determined at the end of each pe-
riod. Therefore, the number of available patients in each HF, in
each period (T > 2) equals the sum of the number of patients who
have been in the HF, from the previous period (considering the
number of discharged and deceased patients), the number of pa-
tients assigned to the HF, in that period, and the number of pa-
tients transferred from HF;s to the HF, in the previous period, as
shown in Constraint (24).

1
S Y =Vih.  Vhj=3k=31t=1 (25)

i=1

I
V/fll(m)-(l - Sz(m) - ‘Skl(t—l)) + nyjklf = VkI.lIt’

i=1
VI.t>2:j=3,k=3 (26)

In HF3, the number of available patients in the first period
equals the number of PT3s assigned to that HF3, since there are
no patients in HF3 at the beginning of the planning horizon, and
there are no deceased or released patients in the first period, as
shown in Constraint (25). Constraint (26) indicates that the num-
ber of available patients in each period (T > 2) equals the sum of
the number of available patients in HF3s in the previous period
(regarding the number of deceased and released patients at the
end of that period) and the number of transferred patients from
SFs to this facility in that period.

ph.Bi < Vi < pH.Uf, Vi t:;k=1 (27)
Z e < M.BJ,. Vi.t:j=1.k=1 (28)
2i-Ca + S < U VI k=23 (29)
pH.Cu.Bll, <V < ph.Cy, Vi, t,k=2,3 (30)

ZR?H:*Z e <MBY,, VLt j=2j=3k=2 (31)

Z e <MBJ, VIt j=3k=3 (32)

The number of available patients in each established HF (in-
cluding HFq, HF,, and HF3) in each period should be less than the
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capacity of that facility. As mentioned before, patients can be re-
jected by an opened HF if the HF is filled. These conditions are
satisfied by Constraints (27) and (28) for HF;. To do so, we define
a binary variable that

1 if HF I of type k is opened and is filled in period t
Bli, = 10 if HF [ of type k is not opened or if HF [ of type
k is opened and is not filled in period t

In HF, and HFs, a proportion of the capacity is assigned to non-
C-19 patients. Therefore, the number of C-19 and non-C-19 pa-
tients should be less than the capacity of opened HFs, as Constraint
(29) shows. Constraint (30) guarantees that the number of avail-
able C-19 patients should be less than the allocated capacity to C-
19 patients. Also, the C-19 patients will be rejected by HF, and
HF; if the assigned capacity to C-19 patients is full, as Constraints
(30-32) show.

Q

> g + qut) = Vit Yk Lt (33)
=1

301

ZZ kigt = q%’ Vq’ t=1 (34)
=1 I=1
Vot (1= &gry) + Zzzqut Vet vq.t>2 (35)

k=1 =1

pg B <V < plUZ. Vg, t (36)
31

22 Pige =MBg.  Va.t (37)

k=1 I=1

The patients in each type of HFs, after their treatment, are dis-
charged and assigned to QFs; however, they will be rejected by
QFs in case of capacity shortage in these facilities, as shown in
Constraint (33). The number of available recovered cases in each
QF in the first period equals the number of assigned cases to that
facility, as Constraint (34) shows. At the end of each period, some
patients are in QFs, a proportion of whom will be released, and
the remaining patients will fill a proportion of the facility capac-
ity in the next period. Therefore, the number of available cases
in a QF in each period (T > 2) equals the sum of the number of
available cases in the QF since previous periods and the number
of assigned cases to the QF in this period, as shown in Constraint
(35). Constraint (36) indicates that the number of available cases
in each opened QF should be less than its capacity. Also, the re-
covered cases can be rejected by opened QFs in case of capacity
shortage. This condition is satisfied by Constraints (36) and (37).
To do so, we define an auxiliary binary variable as follows:

BQ

=10 if QF q is not opened or if QF q is opened and is

1 if QF qis opened and is filled in period t
not filled in period t

UP.Ujj. UL BS. Bl BS € {0, 1},

it “klt»

Vi k1, q,t (38)

Xeit: Yijuit» Ziqt» Poie> Plie» ngtycklv ViVt =0, Ve jk.lq.t
(39)

Constraints (38) and (39) show the types of decision variables.
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3.2. The linear counterpart of the proposed mathematical formulation

The proposed formulation is nonlinear due to the multiplication
of a binary and a continuous variable in Constraints (22) and (30)
(V,fl’(tfl).U,f{,, and Cy.Bf},). We convert the Constraints (22) into its
linear form by defining a new positive variable (F,) as follows
(Psarris & Floudas, 1990):

1

L
H H H
Vit (1= &fie1y) = D Tuwer ey Fawre—1y + Y Yijue = Vi
I'=1 i=1

Vl,tZZ,le,kzl,k/=2 (40)

Fakr 1y < MU, Vit>2:k=1,K =2 (41)

Faere-1) = MUy =D+ Vil q), VLt=2k=1K=2 (42)

Fklk/l/([—l) S Vﬂ([_l), Vl,t Z 2, k = ], k/ = 2 (43)

Egere =0, Vit>1k=1kK =2 (44)

In these constraints, M is the upper value of V,f,’(tf]), which
equals p,’j,. The linear form of Constraint (30) is as follows (F/,. is a

kit
positive variable):

PpHE, <VH < pH .Gy, Vi, t;k=2,3 (45)
F,, <MB! . VI t;k=2,3 (46)
Ej, > M.(B — 1) +Cy. Vi t:k=2,3 (47)
Fl,<Cy VI t;k=2,3 (48)
F,>0, VIt;k=23 (49)

In the above constraints, M is the upper value of C, which
equals 1.

4. Methodology

We live in a fast-changing world. We have limited knowledge
about the future, and many uncertainties exist even if the past
information is available. During the CVO, many factors (such as
adopted policies and the public behavior toward the policies) af-
fect healthcare systems; consequently, decisions should be made
in a highly uncertain environment, and DMs should adopt suitable
approaches to hedge against such uncertainties as much as pos-
sible. During this outbreak, an optimal allocation of resources is a
critical factor that can significantly improve the performance of the
healthcare system.

In the proposed location-allocation problem, the number of sus-
pected cases in each period is highly dynamic. The number of di-
agnosed cases in SFs depends on this parameter. The amount of
capacity filled by patients in HFs and QFs and the number of pa-
tients admitted to HFs and QFs is subject to this random param-
eter. Furthermore, this uncertain parameter arrives over time. In
other words, this parameter is unknown now, but it will be re-
alized in the future, and the realized information can update the
decisions. Stochastic programming is applied to models in which
some data is contaminated with random uncertainty. Notably, the
decisions are made without prior knowledge of the entire data
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stream; however, such data is updated over time; consequently,
the decisions are updated based on the revealed data. According
to the above, we use stochastic programming to deal with uncer-
tainty in the proposed network.

Two-stage stochastic programming (TSP) and multi-stage
stochastic programming (MSP) are two of the most commonly used
approach to hedge against uncertainties. In the TSP approach, some
initial decisions (first-stage decisions) are made before the realiza-
tion of the uncertain data, after which second-stage decisions are
made regarding the realized data (Hosseini-Motlagh et al., 2020;
Samani et al., 2020). In other words, it is assumed that the data
arrives at one point in the planning horizon, and therefore, de-
cisions can be updated at one point in time. However, the data
can be realized in several points of the planning horizon. In such
circumstances, MSP is an appropriate approach to cope with such
uncertain parameters. In this approach, decisions can be revised as
more data becomes available. Therefore, the decisions will be more
reliable and flexible than the decisions made regarding the TSP ap-
proach. According to the above, we applied the MSP approach to
the proposed model.

MSP approach is a more general form of the TSP. In the MSP,
there are several stages, and decision variables are divided into
several groups based on the related stages. In this approach, the
main issue is what data is available to DMs at one stage when
making relevant decisions to this stage. In fact, stages are the point
of time in which new information is realized. In the MSP, the evo-
lution of the uncertain data can be depicted in the form of a sce-
nario tree, as Fig. 2 shows. The scenario tree consists of nodes
and arcs. In the first stage, the root node represents the initial
state of the network. In this node, no information has been real-
ized yet, and the decisions should be made without any knowl-
edge. The root node is connected to some nodes (child nodes) in
the second stage; each of these nodes is associated with the pos-
sible outcomes of the uncertain parameter in this stage. Each of
the nodes in the second stage is connected to several nodes in the
third stage, which are considered as the possible realization of the
uncertain data in the third stage. The branching continues until the
final stage. Each unique path for realizing the uncertain date from
the first stage to the last stage creates a particular scenario. As il-
lustrated in Fig. 2, each child node is connected to at most one
lower-stage node, called the parent node, and the child nodes con-
nected to the same parent node are called sibling nodes. Notably,
the stages and periods are not equivalent, and a stage may include
several periods.

In a scenario tree, a probability is assigned to each possible re-
alization of the uncertain data. The sum of probabilities associated
with sibling nodes equals 1, and the probability of the root node is
1. Moreover, the probability of a scenario is calculated by multiply-
ing the probabilities of the nodes that belong to the unique path
associated with that scenario. In the classical MSP, the value of the
probabilities is estimated based on the experts’ opinions. However,
in real-world situations, estimations are subject to uncertainties;
therefore, the results may not be reliable in some cases. To address
this issue, we apply the MFSP approach, in which the probability
of the nodes is considered a fuzzy number. The MFSP approach is
presented below, and the definitions are provided in Supplemen-
tary Material, Section S1.

4.1. Multi-stage fuzzy stochastic programming approach

In this section, we apply the MFSP approach to the proposed
location-allocation model to address the uncertainty in some pa-
rameters (the number of suspected cases) and the uncertainty in
the probability of the nodes of the scenario tree. The compact form
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Stage 1 (Periods 1 to t1)

[m5G;December 7, 2021;11:1]

European Journal of Operational Research xxx (XxXxx) Xxx

Stage 2 (Periods ti+1 to t2)

e

Stage 3 (Periods t2+1 to t3 )

Stage S-1 (Periods ts-2+1 to ts-1

Stage S (Periods ts-1+1 to ts) |J__| Iﬁ

ﬁim%

o-o-o0-d

Fig. 2. An illustration of a scenario tree.

of the model is as follows:
Z 7511.77.)([,1

neN tet,
subjectto
AXen > A, VneN, tet,
bu+Cxm<§, VneN, tety
Xn >0, VneN, tety; ue{0,1}

minz =

(50)

in which n represents the nodes of the scenario tree (neN). P,
denotes the probability of node n in the scenario tree. This param-
eter is uncertain, which is considered a triangular fuzzy number.
(P" = (PP, PM P9)). A and C are the coefficient matrices, and 7,
b, and & are deterministic parameters. X;; corresponds to decision
variables, and t, denotes the periods associated with node n. u is a
binary decision variable, which is determined at the beginning of
the planning horizon. In fact, it is determined before the realiza-
tion of any information, and it does not depend on n. & is an un-
certain parameter, which becomes available in each stage. To deal
with the possibilistic objective function and chance constraints, Me
measure is used, as follows:

Z 7511 .n ‘Xm>

nenN tet,
Me {Axtn > G} > O, VneN, tet,
bu+Cxep <&, VneN, tet,
Xm >0, VneN, tety; ue{0,1}

where ® is the DMs’ minimum confidence level. Formulation

(51) can be transformed into LAM and UAM forms based on Def-

inition S7 (in Supplementary Material). Finally, the deterministic

counterparts of LAM and UAM formulations are provided based on

Definitions S5 and S6 and the transformation methods provided in

Xu and Zhou (2013) and Zahiri et al. (2017), as shown below.
minz = EW‘(

7511-77~xtn>
subject to

Pos {A.xn > G} > O, VneN, tet,
bu+Cxm<é&, VneN, tet,
U+Cxep <&, VneN, tet,

minz = EM"<

subjectto (51)

2

nen tet,

LAM:

minz = EMe(

subject to

Nec {Axtn > @i} > O, VneN, tet,
bu+Cxy <&, VneN, tet,

Xm >0, VneN, tety; ue{0,1}

Z ﬁn,?’).Xm)

nenN tet,

UAM : (52)
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The deterministic counterparts of LAM and UAM are as follows
(Zahiri et al. (2017)):

minz= Y ((F5).P0+ 3P0+ 5.P8).1Xem
nenN tet,
subject to
LAM: | A x,, > Q.o+ (1-0).al, VnenN, tet,
bu+Cxmy <&, VneN, tet,
Xn >0, VneN, tety; ue{0,1}
minz= Y ((55)PF+ 3P0 + 5.P9) 10X
nenN tety
subject to
UAM :  Axpn > (1— ®).al +0.af, VneN, tet,  (93)
bu+Cxm <&, VneN, tety
Xn >0, VneN, tety; ue{0,1}

where I' is the optimistic-pessimistic parameter of the Me mea-
sure, as stated in Definition S3. Also, Py is the updated value of P,
based on Definition S8. The MFSP form of the proposed model in
Section 3.1 and its deterministic counterpart are provided in Sup-
plementary Material, Section S2.

5. The case

On 17 November 2019, the first C-19 case was reported in
Wuhan, China, and the virus has spread around the world rapidly.
The virus has reached Iran on 19 February 2020, and all the
provinces of the country were affected by the virus. Tehran is the
most populated city in Iran, and therefore, it is one of the most
vulnerable cities to C-19. Tehran has 22 districts, in which dis-
trict 10 is investigated in this study. 317, 160 people live in this
area, and it is the most densely populated district in Tehran. As
shown in Fig. 3, district 10 is divided into 17 zones called regions
henceforth. The population, area, and density of the regions are
inserted in Table S1 in Supplementary Material. We assume that
the suspected cases in each region are located in the center of the
regions. The candidate locations for SFs, HFs, and QFs are shown
in Fig. 3. In Iran, there are 120 laboratories for diagnosis C-19, in
which 30,000 tests can be conducted daily. Therefore, the capac-
ity of each SF is considered 250. Based on the data of Mousazadeh
et al. (2018), the capacity of HF,s and HF3s is considered 620. No-
tably, a proportion of capacities is assigned to non-C-19 patients in
HF,s and HF3s. Based on the data of Mousazadeh et al. (2018), on
average, 190 persons refers to a hospital in district 10 daily, such
that 60%, 20%, 8%, and 12% of them need major services, minor
services, special care services, and rehabilitation services, respec-
tively. Minor services, rehabilitation services, and a proportion of
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Fig. 3. The regions and the candidate locations of SFs, HFs, and QFs.

major services (such as elective surgeries) can be canceled due to
the risk of spreading C-19, and it is supposed that about 60% of
the needs for regular services in hospitals declines. Therefore, we
consider that the average number of referred non-C-19 cases to a
hospital (HF, or HF3) is 76. Besides, the capacities of HF;s and QFs
are considered 500 based on the experts’ opinions. The geographi-
cal coordinates of the candidate location for SFs, HFs, and QFs are
inserted in Table S2. The candidate locations have been chosen so
that to be accessible to all people living in this area.

Based on the reports of the Iran ministry of health and medical
education, C-19 test results are positive for 25-30% of suspected
cases who refer to SFs. 12.3% of these confirmed cases need inpa-
tient care, in which 50% of them have underlying conditions (20%
diabetes, 15% hypertension, and 15% cardiovascular disease) (Iran
Ministry of Health & Medical Education, 2020). Based on the doc-
umented data, a portion of infected patients in HF,s and HF3s will
die. The death rate of C-19 in Iran is 6% (Worldometers, 2020),
in which 90% of them have underlying conditions.! Therefore, the
death rate in HF,;s and HFss is considered 0.6% and 5.4%, respec-
tively. Besides, it is assumed that the discharge rate in HFs and
QFs is 50% (Li et al., 2020). Also, it is supposed that the condition
of 10% of mild cases will deteriorate, and they will need inpatient
care after they are accepted by HF;s (Chen et al.,, 2020).

We categorized the population of the area into three age
groups: children (0-14), adults (15-64), older adults (above 64).
Based on the age-gender pyramid of Tehran, 18%, 73%, and 9% of
the population are in the age group 0-14, 15-64, and above 64, re-
spectively (Mean & Median Age of Iranian Population 2016, 2017).
The people’s susceptibility to C-19 infection varies with the age of
the people. Based on the researches, children are less vulnerable to
the virus, and the elderly population is the most vulnerable to this
virus. In other words, it is declared that the susceptibility to the
C-19 tends to increase with age. Therefore, the susceptibility ratio
of children to adults is considered 0.34, and the susceptibility ratio
of the elderly population to adults is 1.47 (Zhang et al., 2020).

When a C-19 patient coughs, sneezes, or speaks, the susceptible
people may be infected by the C-19 virus directly. Furthermore, the
objects may be contaminated with the C-19 virus when infected
persons touch the objects, which leads to the indirect transmission
of the virus. Thus, a transmission event occurs when a suscepti-
ble person interacts with infected cases or contaminated objects.
We consider that ten transmission events occur hourly according

1 https://tn.ai/2287823

1

to available data, experts’ opinions, and information of the coun-
tries that trace C-19 contacts?-> (Aleta et al., 2020; Hu et al., 2021).
The contact duration for adults is also considered more than for
children and older adults since they do a wide range of activities.
We also consider that the contact duration of adults with children
and elderly groups is higher than with adults because of children
and elderly groups’ needs for the care of adults.

We calculate the transportation distance between nodes (be-
tween the region and SFs, SFs and HFs, HFys and HF,s, HFs and
QFs) with Google Maps, and they are reported in Tables S5-S8 (in
Supplementary Material). The transportation costs are calculated
based on the fuel consumption and distance of the route. More-
over, to calculate the population density of a route connecting two
nodes, we first determine the best route between the nodes by
Google Map. Then we obtain the portion of the route which is lo-
cated in each region by Google Map. Finally, we calculate the pop-
ulation density of this route with Formulation 3.

Iran ministry of roads and urban development estimated that
cost of construction and equipping a hospital per bed is 131,6008,
and consequently, establishing a 600-bed hospital (HF, and HF3)
costs 81,592,000$.% Also, according to experts’ viewpoint, the costs
of establishing HF; and QFs are estimated at 45,000,000%. The op-
erating cost for a suspected case in SFs is considered 167$.> Some
C-19 patients will need to stay in the ICU, and C-19 patients with
the underlying disease may require treatment in the ICU more than
other C-19 patients. 5% of C-19 patients in HF,s and 20% of C-19
cases in HF3s are sent to ICUs.® The average length of staying at
hospitals for C-19 patients who will need intensive care is seven
days, and the average length of staying at the hospital for other
C-19 patients is five days (Rees et al., 2020). Besides, the cost of
treating a mild C-19 patient is 643$, and the cost of treating a se-
vere C-19 patient is 1286$.” Accordingly, the daily costs for treating
one patient in HF;, HF,, and HF; are 120$, 130$, and 1408, respec-
tively. Finally, the patients are sent to QFs, and the average length
of staying in QFs is seven days.® The operating cost in QFs is es-
timated at 600$ per patient, and consequently, the daily operating

2 https://www.health.nd.gov/diseases-conditions/coronavirus/
north-dakota-coronavirus-cases#collapse-accordion-3661-1
3 https://www.nj.gov/health/cd/topics/covid2019_dashboard.shtml
4 https://tn.ai/2109911
5 https://www.borna.news|/fa/tiny/news-1015999
6 https://www.jjo.ir/0051le
7 https://www.eghtesadonline.com/n/2Hhu
8 https://www.jjo.ir/005Ile
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cost in QFs per patient is 86$. Moreover, the total budget is con-
sidered 600,000,000% based on the experts’ opinion.

The related scenario tree to the proposed problem is depicted
in Fig. 4. The scenario tree includes four stages, each of which
includes two periods (stage 1 (t;=1,2), stage 2 (t,=3,4), stage 3
(t3=5,6), and stage 4 (t4=7,8)). The probability of the nodes and
their revised values are inserted in Table S3 in Supplementary Ma-
terial. The probability is determined based on the experts’ opin-
ions and regarding the available data. Furthermore, the number of
suspected cases in each region and each period associated with
each node of the scenario tree (&em) is a fuzzy number, which
is determined as @etn = (b, B, 0%, = (0.8a%, . ol 1.207 ).
Furthermore, each parent node is connected to three child nodes,
as shown in Fig. 4. We consider that among sibling nodes, the
number of the suspected cases of the left child node is 50%
of the associated value to the middle child node; also, for the
right child node, this value is 150% of the associated value to
the middle child node. For example, for sibling nodes 2, 3, and
4, we consider that (ah,. oM, af,)=0.5x (ah;. am;. af,) and
(b, ol ab,) =15 x (ah;. aly. ), as shown in Fig. 5. Addi-
tional data are provided in the Supplementary Material, Section S3.

6. Implementation and evaluation

In this section, the proposed model is solved using the real
data, and the MFSP approach is applied to hedge against uncer-
tainties. All models are solved by GAMS software and Cplex solver
in a reasonable time with 0.00% GAP. The results are reported in
the following, and analyses are conducted on some important pa-
rameters.

6.1. Implementation results

First, we formulate the location-allocation problem. Then, the
MEFSP approach is applied to the model to cope with uncertain
parameters. By applying this approach, the model transforms into
LAM and UAM, which are equivalent to the lower and upper ap-
proximation models, respectively. The results of these models sug-
gest interval values for DMs; consequently, DMs can make their
decisions in this interval regarding their preferences. In decision-
making in fuzzy environments, the MFSP approach provides a

12

range of potential choices for DMs, and the maximum and mini-
mum levels of optimal decisions are determined. Accordingly, DMs
can assess the different choices and make the best decisions re-
garding their attitudes. Based on Definition S7, the feasible region
of LAM is greater than UAM, and consequently, the value of the ob-
jective function of LAM is lower than UAM. The model is solved for
I'=0.5 and ® = 0.9, and the summary of the results is provided
in Table 1 and Table B1 (in Appendix B).

The proposed model aims to minimize the transmission rate of
the C-19 virus during the planning horizon in district 10 of Tehran
by considering different scenarios. Based on Table 1, the objective
value of the LAM is 0.11154%, and the objective value of the UAM
is 0.136414%. In fact, the MFSP approach provides the interval so-
lution [0.0011154, 0.00136414] for DMs to make better decisions in
the fuzzy environment. The UAM is formulated with a more pes-
simistic attitude than LAM, and consequently, the value of the ob-
jective function of the UAM is greater than the objective value of
the LAM. Furthermore, the established facilities in the network for
LAM and UAM are determined in Table 1. The number and location
of the established SFs and HFs (HF;s, HF,s, and HFss) are the same
for LAM and UAM. However, by solving LAM, two QFs are suggested
to be established in the network, and by solving UAM, one QF is
opened. The reason is that the UAM is formulated based on the Nec
measure, and the number of suspected cases is considered more
than that number in LAM; consequently, the number of C-19 pa-
tients and the cost associated with their treatment increase. As a
result, more budget is spent on treating patients, and the number
of established QFs decreases (regarding the limited budget). The lo-
cations of established facilities are depicted in Fig. 6. Furthermore,
it is determined that approximately 80% of the established HF,s
and the HF;3 is assigned to non-C-19 patients. Also, due to the suf-
ficient capacity, no patients have been rejected by health centers
(SFs, HFs, and QFs).

The number of suspected cases assigned to SFs and the num-
ber of occupied beds by C-19 patients in HFs and QFs during the
planning horizon under each scenario are inserted in Table B1 in
Appendix B. As mentioned before, the number of PT;s is greater
than the number of PT,s and PTss, and consequently, more beds
are occupied in HFys rather than HF,s and HF3s under each sce-
nario. Besides, despite the same ratio of PT,s and PT3S, more beds
are occupied in HF,s than HF3s under each scenario. The reason
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Table 1
The summary of the results for LAM and UAM.
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UAM 0.00136414 0 1 1 1 0 1 1 1 1 0 0 1 1
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Fig. 6. The locations of established SFs, HFs, and QFs.
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Fig. 7. The value of the transmission rate under each scenario.

is that a portion of PTys is transferred from HF;s to HF,s due to
the deterioration of their conditions. Furthermore, the number of
occupied beds in QFs is shown in Table B1, which is less than
the number of occupied beds in HFs. Given that the minimum
duration of treatment is considered four days, no bed is occu-
pied until the fourth period. On the other hand, the patients ad-
mitted to hospitals from the 4th period onwards will be trans-
ferred to QFs from the 9th period onwards (regarding the eight-
period planning horizon). For these reasons, the number of occu-
pied beds in QFs is low. The transmission rate of the C-19 un-
der each scenario is depicted in Fig. 7. We categorize the sce-
narios into 9 clusters regarding the optimism degree associated
with each leaf node (the nodes with no child nodes) (i.e. (1,2,3),
(4,5,6), (7,8,9), (10,11,12), (13,14,15), (16,17,18), (19,20,21), (22,23,24),
and (25,26,27)). It is evident that in each cluster, the transmission

rate increases from left to right due to decreasing the optimism
degree.
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In this study, the models are solved using GAMS software
with the CPLEX solver for district 10 of Teheran. The models are
solved in reasonable times with 0.00% GAP (LAM: 42.676 and UAM:
83.291 s). All the models run for sensitivity analyses have been
completed in less than 5 min with 0.00% GAP. Therefore, using al-
gorithms for solving the models regarding the presented network
and collected data is not necessary. However, the model can be
applied to larger-scale case studies than district 10 of Teheran, or
planning the network may be considered for more time periods.
In such cases, the number of continuous and binary variables and
the number of constraints increase. The model presented in this
study is mixed-integer linear programming (MILP), and the num-
ber of binary variables is an important indicator of computational
complexity in this model (Alemany et al., 2018; Carrién & Arroyo,
2006; Viana & Pedroso, 2013; Williams, 2013). By increasing the
network size, increasing the number of time periods, or increasing
both, the number of binary variables and the problem’s computa-
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tional complexity increase. Therefore, heuristic and metaheuristic
techniques can be used to overcome computational difficulties.

6.2. Comparative analysis

The proposed model includes several parameters, and sensitiv-
ity analysis is conducted on some important parameters to help
DMs obtain better solutions. The variation of the objective values
of LAM and UAM for different values of the optimistic-pessimistic
parameter (I") is depicted in Fig. 8. In practice, I" is a pessimistic
parameter in minimization problems, and it is considered an op-
timistic parameter in maximization problems. This study aims to
minimize the transmission rate, and the increment of I' will lead
to adopting a more pessimistic attitude in the decision-making
process. Therefore, the objective values of LAM and UAM increase
as the value of I' increases. Thus, DMs can select their ideal
optimism-pessimism degree in their decisions, which leads to op-
timal decisions in an uncertain environment.

The variation of the objective values of LAM and UAM for dif-
ferent confidence levels (®) is depicted in Fig. 9. By increasing the
value of the ®, the feasible region shrinks, and consequently, the
objective value increases. When the DMs apply more strict atti-
tudes toward chance constraint, they choose a higher confidence
level. As the confidence level increases, the feasible region shrinks,
and the objective value increases in the minimization problems. In
the proposed model, as the value of ® increases, the number of
the suspected cases increases, and consequently, the transmission
rate increases. However, in this problem, by increasing the value
of the ® from 0.8 to 0.9, the objective value decreases. The reason
is that by solving the model for ® = {0.5, 0.6, 0.7, 0.8, 1}, the
same facilities are established (as shown in Table 1), whereas dif-
ferent facilities are established for ® = 0.8. In this case, the model
determines to establish HF3, based on the optimal solution. When
HF3; is opened, the suspected cases should travel longer distances
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to reach HFs compared to when HFs3 is established. Therefore,
the transmission rate rises further, and consequently, the objective
value increases further.

The variation of the objective values of LAM and UAM for dif-
ferent budget values (B) is depicted in Fig. 10. It is evident that
services will be provided for more patients and more efficiently by
increasing the budget. For example, the number of established ca-
pacities may increase, which makes access to health centers easier.
In this case, the traveled distance becomes shorter, and the trans-
mission rate decreases. Also, the shorter route may be crowded in
some cases and the possibility of virus transmission increases. In
such cases, the model will seek the route for transferring patients
to health centers, in which the possibility of the virus transmission
is less, even if the route is longer. Accordingly, more transportation
costs are imposed, and the transmission rate decreases in a prefer-
able manner.

The variation of the objective values of LAM and UAM for differ-
ent values of N and T is depicted in Fig. 11. As mentioned before,
N is the average number of transmission events during contact be-
tween a C-19 patient and other persons, and T is the average du-
ration of contact between a C-19 patient and another person. Fig.
11(a) shows that the transmission rate increases by increasing the
average number of transmission events. Regarding Formulation (4),
N affects the possibility of the transmission (PP), and the possibility
increases by the increment of N, leading to an increased transmis-
sion rate. In Fig. 11(b), it is observed that the transmission rate in-
creases as the average duration of contacts between a susceptible
case and other persons increases. Based on Formulations (2) and
(4), T affects the contact rate (C) and the possibility of transmis-
sion, and finally, the transmission rate between a C-19 patient and
a susceptible person increases as T increases; as a result, the total
transmission rate increases in the network. In Fig. 11(c) and (d),
the effects of simultaneous variations in the values of N and T on
the objective values are investigated. It is evident that the trans-
mission rate increases exponentially with a simultaneous increase
in the value of N and T. Notably, the objective value of UAM is
more influenced than the objective value of LAM by increasing N
and T. In other words, when the values of N and T are smaller, the
solution interval is smaller. The interval becomes larger as N and
T increase. Therefore, for higher values of N and T, the DMs’ opin-
ions significantly affect the obtained results. Fig. 11(d) investigates
the effects of the variation in N and T if they vary in the opposite
direction. It can be said that T has a greater effect on the trans-
mission rate rather than N. Furthermore, in this chart, the objec-
tive value for (N, T) is greater than the objective value of the other
combination of N and T (i.e. (N —40%, T + 40%), (N —20%, T + 20%),
(N +20%, T —20%), and (N +40%, T —40%)). In other words, a de-
crease in one factor (N or T) has a greater effect on the transmis-
sion rate rather than an increase in another.
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In Figs. 12 and 13, the related transmission rates of LAM and
UAM for the different combinations of the values of N and T are
compared to determine the optimal policies to be adopted. It is
evident that when the value of one of these factors (N and T) is
fixed and the other changes, their effects on the transmission rate
are approximately the same. Besides, the least impact on the trans-
fer rate is observed when these factors change in opposite direc-
tions. On the other hand, we have the most impact on the objec-
tive values when co-directional changes are observed in the value
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of N and T. Notably, an increase in the values of the factors has
a greater influence than a decrease in their values. For example,
when the values of the N and T increase by 40%, the objective
value of LAM and UAM are doubled approximately. On the other
hand, if the values of N and T decrease by 40%, the objective val-
ues of LAM and UAM decrease by 60%. Therefore, firstly, it is vital
to adopt measures to control the virus transmission as much as
possible, and after stabilizing the situations, solutions are sought
to reduce the transmission rate.
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Fig. 13. Objective value for LAM versus values of Nand T (1: increase, 1: fixed, |: decrease).

Wearing face masks and performing respiratory hygiene and
hand hygiene can reduce transmission events. Other measures such
as teleworking, physical distancing, and avoiding mass gathering
can reduce the contact between C-19 cases and susceptible cases.
Also, isolation of C-19 cases and quarantine of persons who had
contacts with C-19 cases can reduce the contact rate. At the be-
ginning of the CVO, restrictions were imposed in most countries;
as a result, the transmission rate decreased, and the situation was
stabilized; however, the virus spread was not stopped in most af-
fected countries. In such circumstances, the restrictions were lifted,
and most people returned to work due to the economic conse-
quences of CVO. Accordingly, the number of transmission events
increases. Now, there are three possibilities regarding people’s be-
havior against C-19: 1) T will decrease, N will increase, and the
transmission rate will remain constant approximately (regarding
the green graph); 2) one of T and N will remain constant, the
other will increase, and the transmission rate will increase (regard-
ing the pink and blue graphs); 3) T and N will increase, and the
transmission rate will increase significantly. Therefore, the trans-
mission rate will not decrease much, even in the best conditions.
Moreover, according to these graphs, it is concluded that the im-
pact of N and T on the transmission rate are the same.

The vaccine is another effective tool for controlling infectious
disease transmission (Duijzer et al., 2018; Lin et al. 2020). The
studies showed that the viral load of the C-19 virus in vaccinated
patients is approximately one-third of that of unvaccinated pa-
tients (Levine-Tiefenbrun et al., 2021; Vitiello et al., 2021). This
factor reduces people’s susceptibility to C-19 infection (Sg) accord-
ingly. We show the decreased susceptibility to C-19 infection by
S’g. Regarding those as mentioned earlier, the share of vaccinated
and unvaccinated populations affects the transmission rate. In Fig.
14, we investigate the impact of the different shares of vaccinated
populations on the transmission rate. To do so, we calculate the
new value of Sg (ng’ ) for ipercent of the vaccinated population as
follows:

Sy = Sg.(1—1) + S} (54)

As shown in Fig. 14, the transmission rate decreases signifi-
cantly as the share of the vaccinated population increases. This fig-
ure shows that If people in an unvaccinated area are supposed to
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be fully vaccinated immediately, the transmission rate in that area
will be reduced by 50%. Therefore, if proper vaccination policy had
been adopted and at least a part of the population had been vac-
cinated, we would have witnessed a lower transmission rate. The
effect of time is not considered here, and it is assumed that a part
of the population will be vaccinated immediately. For this reason,
with the complete vaccination of the population, the transmission
rate has not reached zero. However, it is observed that after vacci-
nation of 80% of the population, the transmission rate reaches rel-
ative stability. Therefore, it is concluded that at least 80% of people
need to be vaccinated to reach a relatively stable immunity against
C-19.

When COVID-19 patients are transporting, they are under the
control of healthcare staff and are provided with better protec-
tion. The better the protection, the less the number of transmis-
sion events. As a result, different degrees of protection influence
the possibility of transmission to others, and consequently, the
transmission rate of COVID-19. In Fig. 15, we investigate the im-
pact of different protection degrees on the transmission rate. Bet-
ter protection reduces the number of transmission events (N). We
consider four protection degrees: when protection is sufficient, in
which case the number of transmission events is N, when protec-
tion is good, in which case the number of transmission events is
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reduced by 25% (0.75N), when protection is great, in which case
the number of transmission events is reduced by 50% (0.5N), and
when protection is strong, in which case the number of transmis-
sion events reduced by 75% (0.25N). Notably, this protection is pro-
vided with healthcare staff, and therefore, this protection does not
affect the transmission of the virus when patients move from re-
gions to SFs (n;’iRS). Besides, the rate of transmission by patients
whom hospitals have rejected is not affected by the different de-
grees of protection that staff provide to patients (ngR). Fig. 15 in-
dicates that as the degree of protection for patients increases, the
virus transmission rate decreases. Therefore, healthcare staff can
also help reduce the transmission rate and contain the outbreak
by providing better patient protection.

The people’s susceptibility to the C-19 virus varies based on the
people’s age, and consequently, the population’s age structure af-
fects the transmission rate of the C-19 virus. We categorize the
susceptible cases into three age groups: children (0-14 years old),
adults (15-64 years old), older adults (more than 64 years old),
which make up 18%, 73%, and 9% of the population of the studied
case. The susceptibility of older adults to C-19 cases is higher than
adults (1.47:1). On the other hand, children are less susceptible to
the virus than adults (0.34:1). In Fig. 16, the effect of older pop-
ulation size on the transmission rate is investigated. In Fig. 16(a),
the population of adults remains constant, and the population size
of older adults and children varies. It is evident that the transmis-
sion rate of the C-19 increases as the size of the older population
increases and the size of the child population decreases.

Similarly, in Fig. 16(b), the transmission rate increases as the
number of older people increases and the number of adults de-
creases, while the number of children remains constant. The rea-
son is that older people are more susceptible to the C-19 virus,
which increases the probability of the virus transmission based
on Formulation 1; accordingly, by increasing the number of older
people that increases the probability of transmitting the virus, the
transmission rate rises. It is concluded that policy-makers should
tighten restrictions in the area with a large portion of older people
to prevent further transmission of the C-19 virus.

The age profile of the population affects the transmission rate of
the C-19 virus. Besides, the susceptibility of each age group to the
virus affects the optimal solution of the model. The optimal inter-
val solution of the proposed model is [0.0011154, 0.00136414]. The
optimal solution without considering the population’s age struc-
ture is [0.0011293, 0.00133021], which is not a reliable solution.
Therefore, taking these issues into account helps DMs to make
more reliable decisions during the CVO. In Fig. 17, the sensitivity
of the transmission rate to the degree of susceptibility to the C-19
virus is investigated. In Fig. 17(a), the impact of the susceptibil-
ity degree of older people on the transmission rate is investigated.
In Fig. 17(b), the effect of the susceptibility degree of the child
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population on the objective values is depicted. It is evident that
the transmission rate increases by increasing the susceptibility de-
gree. Besides, increasing the value of Sgiger population has a greater
influence on the objective value than increasing the value of the
Schild population- The reason is that the susceptibility of older peo-
ple is much more than the child population (1.47:034), and con-
sequently, and its changes have a more significant impact on the
objective value. Notably, in the studied case, the size of the older
population is half the size of the child population; however, the
impact of the variation in the value Syier population 1S greater on
the objective value. Therefore, to obtain more reliable solutions,
considering the population’s age structure in the decision-making
process is of great significance. It can also be said that older people
are at high risk of C-19 disease, and the adopted policies should
protect them against C-19 effectively.

6.3. The robustness of the MFSP approach

In this section, the robustness of the proposed MFSP approach
and the classical MFSP approach are compared. In the classical
MESP, the probabilities of nodes are deterministic, while the prob-
abilities in the proposed MFSP are uncertain and are considered
as fuzzy numbers (7). The compact form of the proposed MFSP
model is considered as follows:
minz = P .x
subjectto
Ax>d
bu+Cx<§&
x>0, ue{0,1}

(55)

where & and 7P are triangular fuzzy numbers. First, we generate
the uncertain parameters randomly in their related fuzzy intervals
and solve the model regarding the realized random parameters.
Then, the obtained optimal solution (x*, u*) under each realization
is fixed in the model, and the model is reformulated as follows:

Minz = Ppeg.X* + [1.h+ IT".1
subjectto

AX*+h > Qg
bu*+Cx*—h <&

h,h" >0

(56)

h and h’ represent the violations in the constraints, which are pe-
nalized by IT and IT’, respectively. Also, Py is the updated value
of Preq- In Table 2, the total deviation of the proposed MFSP ap-
proach and the classical MFSP approach are compared. The value
of the confidence level in both approaches is 0.9. It is evident that
the proposed MFSP approach avoids constraint violation more than
the classical approach. Therefore, the proposed approach outper-
forms the classical MFSP approach in terms of average violations
and the standard deviation of violations. Consequently, it can be
said that the constraints are less likely to be violated under each
scenario by applying the MFSP approach. According to the above,
applying the proposed MFSP approach to the presented model is
justified and valid.

7. Conclusion

The novelty of the C-19 virus and the uncertainty that per-
vades the healthcare systems during the CVO highlight the need
for an efficient response to C-19. Besides, deciding on allocating
limited available resources becomes more complicated in such cir-
cumstances. In this study, a location-allocation model is proposed
to obtain an optimized allocation of available resources to C-19
patients while the transmission rate of the C-19 virus minimizes.
The susceptibility to C-19 various is an age-dependent factor, and
accordingly, different age groups are considered. To calculate the
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Table 2
The total violations of constraints under different realizations.
No. Classical MFSP Proposed MFSP
of LAM UAM LAM UAM
tealization 147.83 2001.57 118.45 2000.43
2 139.92 2009.81 136.63 2013.83
3 136.85 2057.18 126.46 2003.40
4 132.31 2001.45 123.51 1973.01
5 148.33 1984.86 139.08 1946.00
6 126.50 2062.50 135.01 1992.16
7 149.77 2023.23 130.13 2001.72
8 129.64 2032.61 132.60 1950.20
9 128.93 2009.49 126.25 2009.27
10 139.13 2033.14 131.05 1999.56
Average 137.92 2021.58 129.92 1988.96
Standard deviation 8.60 25.03 6.34 2417

rate of the C-19 transmission from a C-19 patient to a suscep-
tible case of a specific age group, a function is developed based
on the contact rate, the degree of susceptibility to the C-19 as-
sociated with the age group, the probability of disease transmis-
sion, and the portion of infected cases. Furthermore, to improve
the utilization of limited resources, C-19 patients are categorized
into different groups according to their disease severity and are as-
signed to appropriate HFs to receive medical care tailored to their
needs.

Some data are tainted with uncertainty in the proposed model,
and the MFSP approach is used to cope with uncertainty. In this
approach, the probability of nodes of the scenario tree and the
number of suspected cases are treated as fuzzy variables. The Me
measure is used to cope with chance constraints and the fuzzy
objective. By applying this approach, the proposed model is con-
verted into two models, LAM and UAM, which are based on Pos and
Nec measures, respectively. Finally, the model is applied to the real
case, district 10 of Tehran; the results are provided, and sensitivity
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analyses are carried out, which lead to the following managerial
insights:

(1) An interval solution is provided for DMs by applying the pro-
posed MFSP approach, which supplies them with more infor-
mation. DMs can also incorporate their attitudes into decision-
making, which leads to optimal decisions in a fuzzy environ-
ment.

(2) The number of transmission events per contact (N) and the av-
erage duration of the contact (T) are important factors that af-
fect the transmission rate of the C-19. If the preventive mea-
sure is taken in such a way that can decrease the values of N
and T, the transmission rate decreases significantly. However, if
the measures can reduce the value of one of these factors and
cannot affect the value of the other, a smaller impact on the
transmission rate is observed. Besides, if the values of N and T
change in the opposite direction, the transmission rate remains
almost constant.
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(3) The vaccine is another effective tool for controlling CVO, and
adopting appropriate policies to vaccinate people as soon as
possible is very effective in reducing the spread of C-19. Be-
sides, vaccinating at least 80% of the population provides rela-
tively stable immunity against C-19.

The population’s age structure affects the transmission rate of
C-19, and the older population has a greater influence on the
transmission rate. Thus, preventive measures should be taken
in such a way that they protect older people against C-19 effi-
ciently and fairly.

By assigning patients to centers providing the services tailored
to their needs, the limited resources will be allocated equitably,
and the capacity shortage is avoided as much as possible.

—
w
~

As further extensions of this study, the effect of different pre-
ventive measures on the transmission rate can be considered.
Furthermore, considering the asymptomatically infected cases can
make the model more reliable. The uncertainty in the death rate
and discharge rate can be taken into account. After assigning dif-
ferent types of C-19 patients to different types of HFs, the pa-
tients need different types of medical care according to their dis-
ease severity; consequently, the resource allocation within HFs can
be incorporated into the model. Moreover, the concept of robust-
ness can be incorporated into the model to improve its perfor-
mance. Regarding the different viral loads of vaccinated and un-
vaccinated patients, we can categorize the infected cases into two
groups (vaccinated C-19 patients and unvaccinated C-19 patients),
which leads to a more accurate transmission rate. (Egs. (3), (7),
(40-50), (52-56) (Table B1)
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